How many volts are in 150 watts
Standard power consumption, device runtime and so
When planning or modifying the electrical system in a mobile home or wowa or when buying electricityhungry consumers, the question arises again and again: how long will I have electricity when the device is in operation
The ostensible answer
Battery capacity in Ah: The current consumption of the device (s) in A is unfortunately not correct, as is so often the case.
To understand the following, it is necessary to know about the following units

In order to be able to calculate the operating time, the current consumption I (A) of the loads must be determined beforehand. either using the information on the data sheet or by measuring.
Convert watts to amperes
If no current (A) but only the power (W) of the device is specified, this must be converted.
I = P / U
The power consumption of a load with 55 watts is calculated as I = 55 watts / 12 volts = 4.6 amps
Why 12 volts?
Because that corresponds to the approximate mean value for the power consumption in the womo / wowa. 13 volts has a full battery, at 11 volts the discharge should approximately end. The mean value is therefore 12 volts.
Battery operating time
Now that the required current has been calculated in this way, it can be happily divided by the available capacity (Ah) of the batteries and this is how the operating time is obtained.
Invoice in the form of
h = Ah / A
for "available" 70 Ah and a load of 55 watts, the operating time would be as follows:
h = 70 Ah / 4.6A = 15.2 hours.
How many Ah are now available in the onboard battery. To cut it short: There are always fewer Ah than you think.
A battery is only fully charged if the charge is regulated by means of a charging characteristic (usually 4 to 7 levels) and with temperature compensation, whereby the temperature sensor should ideally be on the battery.
The battery is only fully charged when it is charged
 the LiMa if it has installed a good B2B controller (sterling etc)
 the charger if it fulfills the above conditions
 the solar panel if the solar charge controller fulfills the above conditions
In all other cases (especially if there is no temperature compensation) the battery will
 too strongly charged at temperatures above 30 degrees and soon damaged by cell corrosion
 too little charged at temperatures below 20 degrees and longterm damage due to sulphation
At temperatures around zero degrees and below, the insufficient charge is clearly noticeable. Without temperature compensation, the battery is only charged to approx. 75% to 80%, regardless of how long it is on the charger.
How much capacity is available therefore depends on the charging technology.
As a guideline you can count at
 Characteristic curve chargers WITHOUT temperature compensation assume 80% charge in winter and 90% charge in summer
 For chargers without a characteristic curve and without temperature compensation (or when charging via the alternator), assume 70% charge in winter and 85% charge in summer.
Important:
Due to its design, a battery must never be completely discharged. Depending on the type and type of battery, at least 20% to 40% of the total capacity must remain in the battery in order to prevent deep discharge and damage to the cells. We reckon with 25% capacity that must or should remain at the end of unloading.
Calculation example:
There are lavish 2 x 110 Ah batteries,
Charging using a characteristic curve charger without temperature compensation or LiMa
last is a cool box with an output of 150 watts
how long is the operating time with fully charged batteries in winter at approx. + 5 ° degrees
Calculation of the current:
150 watts / 12 volts = 12.5 amps
Calculation of the capacity:
80% of 220 Ah therefore 175 Ah are available
Calculation of the remaining capacity:
25% of 220 Ah, therefore 55 Ah, should be left over as the remaining capacity
Calculation of the "available" capacity
175 Ah  55 Ah = 120 Ah are "available"
Calculation of the running time:
120Ah / 12.5A = 9.6 hours
If several consumers are connected, simply add the currents before the start of the calculation and then carry out the calculation
With these formulas or those derived from them, with known consumer currents and switchon times, the required battery capacity can also be calculated back in order to be able to be selfsufficient for a certain period of time. But this is another story.
A simple abbreviated calculation to do this
Whenever it is more complicated, the following example shows that it is also easier to do with arithmetic.
W.att: V.olt x 1.8 = A.mper /H
the resulting value is simply divided by the total capacity of the battery. It's really quick and easy.
To stick with the example.
150W: 12V = 12.5A x 1.8 = 22.5Ah
220 Ah: 22.5 = 9.7 hours
 Ratko Ivanovi% C4% 87
 Should we be taking Ayurvedic medicines without a prescription
 How do you become a whistleblower
 Is there mouthwash that I can swallow
 What does arcrostic
 What is adult education
 How does the Pixable algorithm work
 What are the sample exercises for whole numbers
 Why don't women found their own country
 What makes a lasagna good
 Why does sodium not react instantly with chlorine
 Dry eyes cause pain
 What mythical creatures sometimes take human form
 What do start and stop codons do
 How are sums and products related?
 An honest person can have more friends
 What are cultivators
 Which course is best for engineering
 What is the story of tibet
 How do Jewish entrepreneurs think
 Why was Richard Feynman against brushing your teeth?
 How would you change World of Warcraft
 What are power chain struts
 What is the text formatting tag